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ABSTRACT: Expressions have been obtained for the dimensionless 
heat-transfer criteria of liquids with structural viscosity for the con- 
ditions t w = eonst and qw = const in the case of laminar quasi-iso 
thermai flow. 

Let u~ consider the case of quasi-isothermal flow of liquids with 
structural viscosity, L e., let us assume that the temperature gradi- 
ents along the radius of the pipe are such that the heat conductivity, 
heat capacity, and density of the liquid may be assumed constant 
over the cross section, while the viscosity depends only on the tan- 
gential shear stress r. 

For values of the Peclet number P > 10 in a steady axisymmetric 
linear laminar flow the energy equation in cylindrical coordinates 
may be written in the form 

W Ot a' O [ a t  
" ~  = --7- ~ ~r ~ - )  , (1) 

where W is the flow velocity, t is the flow temperature, and a is 
the thermal diffusivity. 

The general form of the relation between fluidity and shear stress 
~o(r) for a liquid with structural viscosity, whose theological charac- 
teristics are independent of time, was proposed in [1]. For liquids 
with a linear, quadratic, etc., fluidity law the equation for the ve- 
locity gradient at v t ~ 0 can be written in the form 

d W  Ipo [ t  + ~ (2) 
dr 

n = l  

where % is the zero fluidity (fluidity as v --> O) 0 is the coefficient 
of structural stability, and r is the tangential shear stress. In the re- 
gion of stabilized flow the shear stress distribution over the pipe cross 
section has the form 

= %~ (~ = f i B ) ,  (3) 

where r w is the tangential shear stress at the wall. Substituting (3) 
into (2) and integrating for W = 0 when g = 1, we get the velocity 
distribution 

W =  1 - - ~ +  n + 2  % 

The expression for the relative velocity 

<W>----2 t - -  ~2+ 

" { - 2  n + 2  % v w n ( l - ~ n + 2  1 +  - - -  

In this case the mean flow rate is equal to 

I 

0 n=l 
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has the form 

4 O n n7-1 
n + 4  % ~w J . (5 )  
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As a rule, media with structural viscosity are characterized by a 
small coefficient of heat conductivity X. a considerable specific heat 
Cp, and a high kinematic viscosity v. Thus, for such media the 
Prandtl number o >> 1. Therefore we may assume that in these media 
the thickness of the hydrodynamic boundary layer is much greater 
than that of the thermal boundary layer, and the process of heat trans- 

fer is concentrated in a narrow region near the wall. 

We introduce into (5) the new variable y = R -- r and, considering 
only the region near the wall, we neglect the ratio y/R in powers 
higher than the first (a similar approach to the diffusion problem was 
made in [2]). Then the velocity distribution near the wall takes the 
form 

~v 4 <W> y 
= B X, 
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The coefficient • takes into account the structurally-viscous prop- 
erties of a medium with linear (n = 1), quadratic (n = 2), etc., 
fluidity laws. 

Since the thermal boundary layer is much smaller than the radius 
of the pipe, the layer of liquid participating in heat transfer may be 
assumed plane, and Eq. (1) may be written in the form 

Solution for case  t 
W 

quantities 

Ot 02t 
W ~ -  = a 0y~ " (7) 

ffi const. We introduce the dimensionless 

t w -  t x y D <W> 
, X _ = - ~ - ,  Y = - ~ - ,  i v =  

0 = t w _ _  to a 

Here t o is the liquid temperature at the edge of the thermal boundary 
layer, equal to the temperature at the pipe inlet. 

Then Eq. (7) becomes 

8 z Y P ~  = OY~ �9 (8) 

Introducing the new dimensionless variable 

r (----X F/3  = \ Zp / , (9) 

from Eq. (8) we get the ordinary differential equation 

d~l 2 + ~ -~- = 0  , (10) 

the solution of which with boundary conditions 

~ = 0  at Y = 0 ,  9 = 1  a t  X = 0 ,  

has the form 

"tl c o  

0 0 

The Nusselt number 

Ot 
" (12) N x  = t w - -  to 

Substituting into (12) the expression for 0t/0y at y = 0 from (11), we 
get 

N x ---- t.07 (xP 
D ?/, 

77-] ~ (la) 

and the average value of the Nusselt number of length L 

" "2 f ~ D \ 'I. < N > = . ,  \ x~ ' -E )  " (14) 
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*:or e s t ima t iug  the change  m thickness of the the rmal  boundary layer  

6 T  we have  

q (z) \ z P  ] " 

[:or l iquids with structural  viscosi ty for which X > 1 the the rmai  

boundary layer  grows more slowty than for ordinary l iquids  (X = 1) 

at the same va tue  of the Pec le t  number. Therefore the length  of the 
segment  of the pipe of which 6T at ta ins  values of the radius wil l  be 

somewhat  greater,  i . e . ,  L0 ~ • 

Since in most p rac t i ca l  cases for l iquids  with structural viscosity 

the product xP is large,  the ent i re  pipe wi l l  be covered by the in le t  
region, in which the assumption tha t  6 T << R holds. 

Solution for case qw = eonst. Dif ferent ia t ing  Eq. (8) with respect  
t o Y ,  we have 

0%% O / 1  Oz@ 
8xP OY OX-- O Y i V  O-YT) " (]5) 

Introducing into (15) the heat  flux densi ty rat io 

at% / O~ " ,- t  
e = 7F" [~-)Y~o ' (16) 

and lnaPing the change of var iables  (9), we get  

d=Q 8q a -  3 dQ 
~ +  -~ en = o .  (17) 

The solution of this equat ion for the boundary condit ions Q = 1 at 
g = 0, 0 = 0 at  X = 0 has the form 

o0 8 oa 8 -~ 

~q 0 

Substi tuting (18) into (18) and in tegra t ing ,  we get  the t empera tu re  

distr ibution 

\ zP /  t L r(%) J§  ~ ( ~ )  / '  
(19) 

and the loca l  va lue  of the Nusselr number 

, D ,% 
,~:x = , ,29 [X~ T )  " <-0) 

The average  value  of the Nusselt number of length L is equal  to 

(N> = ' .93 IxP  ~- - )  . (21)  

Thus, the ca lcu la t ions  show that  the rat io of the heat  transfer 

coeff icients  of l iquids with structural viscosity to the heat  transfer 
coeff ic ients  of ordinary Newtonian l iquids at  iden t i ca l  values of 

PD/L and for boundary conditions of both the first (t = const) and 
w 

second (q = const) kinds wil l  be 
w 

N / N 0 = Z %" 

Values of •  for a series of l iquids with structural vis-  

cosity (1% solution of sodium carboxymethyl  eel iulose,  1.7% solution 

of rubber in toluene,  M-II1 bi tumen)  did not exceed 1.8. It is there-  

fore to be expected  that  the values of the Nusselt numbers for such 

media  under condit ions of quas i - i so thermal  flow wi l l  differ from their  
values for ordinary l iquids by not more than 10-20%. 
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