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CALCULATION OF HEAT TRANSFER IN LAMINAR PIPE FLOW OF LIQUIDS WITH STRUCTURAL VISCOSITY
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ABSTRACT: Expressions have been obtained for the dimensionless
heat-transfer criteria of liquids with structural viscosity for the con-
ditions ty, = const and qi = const in the case of laminar quasi-iso-
thermal flow.

Let ug consider the case of quasi-isothermal flow of liquids with
structural viscosity, i.e., let us assume that the temperature gradi-
ents along the radius of the pipe are such that the heat conductivity,
heat capacity, and density of the liquid may be assumed constant
over the cross section, while the viscosity depends only on the tan-
gential shear stress 7,

For values of the Peclet number P > 10 in a steady axisymmetric
linear laminar flow the energy equation in cylindrical coordinates
may be written in the form

W~=—%i(r—%), (1)

where W is the flow velocity, t is the flow temperature, and a is
the thermal diffusivity.

The general form of the relation between fluidity and shear stress
() for a liquid with structural viscosity, whose rheological charac-
teristics are independent of time, was proposed in [1]. For liquids
with a linear, quadratic, etc,, fluidity law the equation for the ve-
locity gradient at 7, # 0 can be written in the form
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where ¢, is the zero fluidity (fluidity as T — 0) 6 is the coefficient
of structural stability, and r is the tangential shear stress, In the re-
gion of stabilized flow the shear stress distribution over the pipe cross
section has the form

T = Tk E=r/R), 3)

where 7, is the tangential shear stress at the wall, Substituting (3)
into (2) and integrating for W = 0 when £ =1, we get the velocity
distribution
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The expression for the relative velocity has the form
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In this case the mean flow rate is equal to

<W>=2§Wad£ ¢°T”(1+Zni4 3: o).
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As a rule, media with structural viscosity are characterized by a
small coefficient of heat conductivity A, a considerable specific heat
Cp and a high kinematic viscosity v, Thus, for such media the
Prandtl number o > 1, Therefore we may assume that in these media
the thickness of the hydrodynamic boundary layer is much greater
than that of the thermal boundary layer, and the process of heat trans-
fer is concentrated in a narrow region near the wall,

We introduce into (5) the new variable y =R = r and, considering
only the region near the wall, we neglect the ratio y/R in powers
higher than the first (a similar approach to the diffusion problem was
made in [2]). Then the velocity distribution near the wall takes the
form
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The coefficient x takes into account the structurally-viscous prop-
erties of a medium with linear (n = 1), quadratic (n =2), ete,,
fluidity laws,

Since the thermal boundary layer is much smaller than the radius
of the pipe, the layer of liquid participating in heat transfer may be
assumed plane, and Eq. (1) may be written in the form

ot a2t
=

Solution for case t = const. We introduce the dimensionless
quantities

M

=z =L - D
) X::D, Y:D, Pz—r‘.

Here t, is the liquid temperature at the edge of the thermal boundary
layer, equal to the temperature at the pipe inlet,
Then Eq. (7) becomes

A 929
SXYP-B'X— = 3y - (8)

Introducing the new dimensionless variable

from Eq, (8) we get the ordinary differential equation

azd 8 a9

T =0, (10)

the solution of which with boundary conditions

=0 at Y=0, G=1 at X =0,

has the form

Lol
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The Nusselt number

D ot
Ne= ly—t (E)uﬂ' 12

Substituting into (12) the expression for 9t/dy at y = 0 from (11), we
get

D\
No=107(xp )" (13)
and the average value of the Nusselt number of length L

s

(N> =1.62 (xp %) . (14)
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ror estimating the change in thickness of the thermal boundary layer
oT we have

5 Ml —t) R\
T 7 (=) <xP > ’

For liquids with structural viscesity for which x > 1 the thermal
houndary layer grows more slowly than for ordinary liquids (x = 1)
at the same value of the Peclet number, Therefore the length of the
segment of the pipe of which éT attains values of the radius will be
somewhat greater, i.e., Ly ~ XRP.

Since in most practical cases for liquids with structural viscosity
the product xP is large, the entire pipe will be covered by the inlet
region, in which the assumption that 6 <« R holds,

Solution for case q,, = const, Differentiating Eq. (8) with respect
toY, we have

Y 3y2
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)

3V oX =3y (15)

Introducing into (15) the heat flux density ratio

I

and making the change of variables (9), we get

a2Q 8nt—3 dQ
a7 +Td—n—=0 aT)

The solution of this equation for the boundary conditions Q =1 at
Y =0, Q=0 at X =0 has the form

cQ
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n
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Substituting (18) into (16) and integrating, we get the temperature
distribution

X M T (%3 n) exp (— 8o %)

o= ()T

xP T (fs) Cla) =T (fe)

(19)

and the local value of the Nusselr number
D \Y
Ny=1.20 (XP ——) ’, (0)
x
The average value of the Nusselt number of length L is equal to
1
!
(NS = 1.93 <xP %) ’, 1)

Thus, the calculations show that the ratio of the heat transfer
coefficients of liquids with structural viscosity to the heat transfer
coefficients of ordinary Newtonian liquids at identical values of
PD/L and for boundary conditions of both the first (t = const) and
second (qw = const) kinds will be W

N[N, = X!IQ.

Values of x calculated for a series of liquids with structural vis-
cosity (1% solution of sodinm carboxymethyl cellulose, 1,7% solution
of rubber in toluene, M-Il bitumen) did not exceed 1,3, It is there-
fore to be expected that the values of the Nusselt numbers for such
media under conditions of quasi-isothermal flow will differ from their
values for ordinary liguids by not more than 10~20%.
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